- I RIS A mer pAs=e=Aam n AnA
AUG. -20" 03 (WED) 185:26 ADVANCED SOLUTTONS CGROU- S 800TTTERG0 002
i CR_AR-TR-03- 7
REPORT DOCUMENTATION PAGE AFRL-SR-AR-TR-03
Bl I dany for i lon of int lon | d I h ’ din B
Rl e e L e (LU
fation, cne ®h, ‘0 L] 0 g b r
1n 29)6"‘ Jen?-rnn Dm’l HI=Ew- ,nSu" 1204 lrlln - VA 222&!}?‘:2. nnspnr\r:nw -hon'lw b .::'.m‘lh" natwith . Ay

panalty for tailing 1o comply with sailection af lnﬁrrrf:i:lcn I 1T duws nat diepiny w aurrantly valid OMB contral number,
PLEAGE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY] | 2. REPORT TYPE 3. DATES COVERED (Ffiom - Ta)
07-01-2003 Final Technical Report 01/01/2002-3/31/2003
6a. CONTRACT NUMBER

4. TITLE AND SURTITLE
High Security Information System F49620-01-1-0329
bb. GRANT NUMBER

6c. PROGRAM ELEMENT NUMBER

8. AUTHOR(S} hd. PRQJECT NLIMBER

Lane, Brendan F.

6a. TAEK NUMBER

B6f. WORK UNIT NUMBER

7. PERFOAMING ORGANIZATION NAME(S) AND ADDRESS(ES) H. PERFORAMING ORGANIZATION
TUniversity of Sauth Carolina REPORT NUMBER

Department of Physics

Columbia, South Carolina 29208

8. SPONSORING/MONITORING AGENCY NAME(8) AND ADDRESS(ES] 10. BOR/MONI 'S ACRO (
USAF, AFRL AFOSR/PK3

AR Office of Scientific Research ‘
80! N. Rando|ph Street, Room 732 11. 8 OR/MONITOR'S AREPORT
Arlington, VA 22203 \\\) ?(\ NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The overall focus of the University of South Carolina Crirical Infrastructure Protection and Information Assurance Fellowship was
in the area of comptuer security with a concentration in network traffic analysis. The Fellow addressed problems related to the
developing approaches for fast and robust analysis of netwaork traffic based on results obtained in complex system theory. To
accornplish the research, it was important (o develop and test wavelet technique for time-series analysis which could be naturally
extended for the analysis of multidimensional time series. It also was desirable to find methods to speed up the existng
time-consuming technique for obtaining characteristic time scales for the given chaotic time series. These requirements weys the
starting point for defining the set of mathematical problems 1o be solved.

16. SUBJECT TERMB
Network traffic analysis; complex system theary; wavelet technique; computer security

: ATION OF _ [16. NUMBER [18n. NAME OF RESPONSIBLE PERSON
ABETRACT 3: ags | Joseph E. Johnson
none 10b. TELEPHONE NUMBER (fnciude area codel
20 803-777-8834

16. SECURITY CLASSIFICATION OF:
8. REPOAT | b. ABSTRACT

Prescribed by ANG| 61d, 238,18

BEST AVAILABLE COPY 2003 1 1 2 1 009 .

Air Force Office of Scientific Research
Grant Final Report

High Security Information System

Dr. Joseph Johnson, PI
Department of Physics
University of South Carolina

Dr. Brendan F. Lane, Fellow
University of South Carolina

Background of the Fellowship

Dr. Lane completed the requirements for a Ph.D. in Mathematics in the spring of 2001
and continued to work with the applied math group at the University of South Carolina
until the end of calendar year. His dissertation and other research concentrated on image
analysis with an emphasis in image registration. With a strong background in wavelet
theory, numerical analysis, and computer programming, Dr. Lane was appointed the
CIPIAF Fellowship in late 2001 and joined Dr. Johnson’s research group in January
2002.

Brief Summary

This report will describe the work and research that has been accomplished by the
University of South Carolina (USC) recipient of the Critical Infrastructure Protection and
Information Assurance Fellowship (CIPIAF). The overall focus of the Fellowship was in
the area of computer security with a concentration in investigating techniques and
strategies of network traffic analysis. Providing network managers, computer scientists,
and security administrators the ability to recognize network traffic anomalies efficiently
would be extremely helpful and a potential starting point for real-time detection and
possible avoidance of security breaches such as denial of service attacks and intrusions.

The fellow addressed problems related to the developing approaches for fast and robust
analysis of network traffic based on the results obtained in the complex system theory. To
do this it was important to develop and to test wavelet technique for time series analysis
which could be naturally extended for the analysis of multidimensional time series. Also,
it was desirable to investigate speeding up the existing time-consuming technique, based
on the mutual information calculations, for obtaining characteristic time scales for the
given chaotic time series. These requirements were the starting point for defining the set
of mathematical problems to be solved.

The Fellow’s work was composed of several different projects that investigated potential
techniques which eventually could be incorporated into the afore-mentioned overall
process of network traffic data analysis. The time involved with each of these projects
included a period of investigative reading, writing computer code that mimicked previous

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

algorithms and results, and writing programs that implemented new techniques and
produced data to justify and support its usage. Along with these projects, the year was
also spent communicating with other researchers. Along with interacting with researchers
in the USC community, attendance at three conferences provided an opportunity to meet
people from around the nation who are investigating similar problems.

[

Research Projects

This section of the report will describe the different projects that were completed during '
the Fellowship.

Rossler and Lorentz attractors

The purpose of this project was to generate a set of data to be used in future applications.
Using well-understood non-linear dynamic systems, the data was chosen to model some
of the properties of network computer traffic. With properly selected parameters, the
Rossler and Lorentz systems provide bounded three-dimensional pseudo periodic data
streams. Our application will consider the solutions of these systems to be three states in
which a particle’s motion (changing states) is dependent. '

/

r = oly—2x) | T =y —X
y =rr—y—zz Yy = x4+ Ay
' = zy — bz 7 = B+zy—C=z

I

N
|

Figure 1: Lorenz system of equations. Figure 2: Rossler system of equations.

One avenue of research in network traffic analyzes either the TCP or IP packet
information that accompanies the data that travels on the Internet. Fields from these
packets are fixed length binary information and are thus bounded. In re gards to using a
dynamical system to generate the data stream is to subscribe to the assumption that the
traffic flow is not completely random. The systems that were used are well behaved but
still chaotic in nature and although the flows follow a general tendency, the flows are not
periodic.

Figure 3: Attractor from Rossler system. Figure 4: Attractor from the Lorenz system.

Picard Method

While generating the solutions for the Rossler and Lorenz systems, a high order method
was implemented to avoid the lack of stability in the simpler step methods predicting a
solution. Since these systems are first order ordinary differential equations, an
approximation to the exact solution can be found by repetitive scheme of using the initial
value (or subsequent solutions) and adding the product of the instantaneous velocity
(which is provided in the statement of the equations) and a certain time step. To remain
stable, low order approximations are forced to use smaller time steps, hence requiring
more computations when approximating the path of a particle over a fixed amount of
time.

The Picard method is one method of solving first-order differential equations that are in
algebraic form. Being in algebraic form means that the system of equations is defined
where the derivatives of each variable equal to a polynomial of the variables of the
system. In this research, the Rossler and Lorenz systems are already in algebraic form
(see equations in previous section). The Picard method can be implemented to
approximate with any order, thus allowing for longer time steps and remaining stable.
Any first-order system of ordinary differential equations can be modified into an
algebraic form by introducing additional equations to eliminate the non-algebraic terms.

Along with implementing the Picard method for the two systems, a program was written
to simplify the use of the Picard method in future work which allows for users to define
their algebraic system of definitions easily and to specify the order of approximation.
Without this symbolic language (similar to reverse Polish notion), one would have to
carry out numerous computations just to set up a single problem for a specified order of
approximation.

The following is the subroutine that defines the Rossler attractor. The variable Aisa
vector holding each of the polynomial derivative definitions while the variable V is a
vector of the variable values. One should note that order of approximation is not part of
the system definition, so no additional changes are required if a higher order is needed.

void Rossler ()

{ ' »)
double a, b, ¢
a }O H
b =2
c 4

- n

PushPoly (. &A[0], &V[1])} ;
PushPoly{ &A[O0], &V[2]) ;
PushOperand(&A[O0], 'A')
PushScalar(&A[O], -1) ;
PushOperand(&A[0], '"*');

PushPoly(&A[1l], &V[1]) :
PushScalar(&A{l], a)i

PushOperand(&A[l], AR
PushPoly{ &A[1l], &V[O0]) ;
PushOperand(&A[1l], 'A');

_PushPoly(&A[2], &V[0]) 7
PushScalar(&A[2], -c) i
PushOperand(&A[2], '+');
PushPoly(&A[2], &V[2]);
PushOperand(&Af[2], 'M')
PushScalar(&A[2], b);
PushOperand(&A[2], '+')7

’

Entropy of systems

This project investigated methods and techniques of measuring data streams of
information. In this project, the goal was to create a good method to measure the
difference between one set of ordered values against the same set shifted (time delayed)
by a fixed amount k. Traditionally, the autocorrelation function has been used to measure
the independence between these two sets of values. Other research (P.S. Shaw and A.M.
Frasier/H. L. Swinney) has stated that the mutual information can be used to better
estimate the zero of the autocorrelation function.

The autocorrelation function is defined for a set of ordered values and a given offset
value k as the following way.

ACk({yi}) = Z@gz}@ig;)

Figure 5: Definition of the autocorrleation function

The autocorrelation function is scale and shift invariant and has the range from -1 to 1.
The first part of the project concentrated on system entropy and the mutual information
function of a probability density function. If given a discrete set of events each have its

own associated probabilities, the entropy of the system is equal to the average #mount of
information and is formulated by the following weighted average: ,

E({p:}) Z P log —

Figure 6: Definition of Entropy

In terms of information, this weighted average is the balance between the likelihood of an
event happening and the information one gains from it happening. On one hand, if there
exists only one event with probability 1 of occurring, then there is no information that is
gained when the event occurs. On the other hand, if there are 16 events with equal
chance, then the entropy of this system is 4; consider that it would take four bits to
encode the different events and on average you would gain these four bits if any one
event occurred.

Another function in measuring a probability density function of two dimensions is with
the mutual information function. The mutual information function uses not only the
probability of the discrete events but also the marginal distributions of each variable and
is formulated by the following:

Pij
M({pi}) =D pij 10gp———_ ; .
i j (2% wEY

Figure 7: Defintion of Mutual Information

The mutual information function can be re-written using the entropy function and shows
that the mutual information function is measuring the difference between the information
of the entire system versus the sum of the information gained by looking at the marginal
probabilities.

M({ps}) = B({pi.)+ E({p 1)~ E({ps})

Figure 8: Mutual information in terms of entropy

Relating this function back to probability theory, if the indices are treated as random
variables, the mutual information function is zero when the random variables are
independent.

In this project, the probablhty density functions were created from the data streams of the
Rossler and Lorenz systems. Given an integer k which reflects the periodicity, a
significantly large set of points 4 from one of the previously mentioned data set and
considering one of the variables w (or any projection of the independent variables) of the
data stream, the probability density function Fy is defined by the following,

Fk(g;,y)':' P((z,y) = (w;, wi+x) where w; € Proj(A))

Figure 9: Probablity density function for measuring time delay dependence in data flow information,

In practice, the above definition is modified to measure the probability over a
neighborhood of points rather the equality shown above. Using this practice, the function
then reflects approximately the proportion of observations occurring in the neighborhood
of (x,y). To determine this function, the range of values was segmented into equal sized
squares and with one pass through the data, an intermediate histogram reflecting the
number of observations that landed in each square was constructed. With this histogram,
the probabilities were computed by dividing each value of the histogram by the total
number of observations. This two-dimensional probability function can be used to
quickly compute the autocorrelation function and the mutual information function.

Rossler Data

k (time delay parameter)

Figure 10: Comparison of the mutual information function and the autocorrelation function.
¢

Using the Rossler data, a strong relationship can be seen between the graphs of the
mutual information function and the autocorrelation function as the time delay parameter
varies. The peaks in the mutual information occur at approximately the half-integer
multiples of the estimated periodicity of the Rossler attractor. These locations also
correspond to the local minimums and maximums of the autocorrelation function.
Between the peaks, the local minimums of the mutual information function occur at the
zeros of the autocorrelation function.

Besides showing the relationship, work to approximate the data (namely the histogram)
using wavelets to reduce the number of computations was investigated. By uniformly
increasing the size of the neighborhoods by a factor of 2 in the definition of the modified
probability density function, the number of computations reduces by a factor of 4.

‘ Lorenz Data
| Mutual Information

—&— Series1
—— Series2

0 50 100 150 200
' k (time delay parameter)

Figure 11: Comparison of different resolutions in computing the mutual information function using
the Lorenz attractor data set.

Comparing the graphs of the mutual information function of different resolution shows
that the locations of the minimum values occur at approximately the same & values. With
this fact, wavelet coefficient thresholding was implemented to incorporate the use of"
coarser resolution in certain areas of the density function’s range to reduce the number of
computations. The use of wavelets will be beneficial in future work to compare more
than two data flows at a given time. By first approximating a multivariate probability
density function with wavelet thresholding, then using the tree structure of the
coefficients in the computation phrase of the mutual information function should
dramatically reduce the number of computations by avoiding calculations where the
coefficient tree is sparse

This project is still ongoing and is work that should be explored in the future. The packet
information from Internet data traffic is multidimensional and methods of analyzing more
than two fields of information will be needed. Other methods that can show dependence
or independence with less computational effort should be explored as well. Avenues that
seem to show promise would be to relate the data to smoothness spaces (like Sobolev or
Besov spaces). In working with smoothness spaces, there is a natural link to information
theory in the area of complexity and relating complexity back to the smoothness classes.

New contacts and new research

During the fellowship period, an effort was made to develop new contacts with others in
the research community and to become acquainted to some degree in new research areas.
Within USC, new relationships were built with people in the Department of Physics,
Department of Statistics, and Department of Electrical Engineering. Also there were
some new contacts (for example, from University of Wisconsin, James Madison

University, and Naval Research Labs) made at conferences that were attended during the
year or during visitations. :

During the year, three conferences were attended. Each of the conferences was very
useful in understanding the current research that is being done in the areas of computer
security. First in March 2002, the fellow and Dr. Johnson attended the OASIS conference
that focused on computer security and information integrity.

In November 2002, the IDR (Ideal Data Representation) Fall Conference was held at
USC. The IDR group is a NSF-sponsored consortium of universities involved with
developing data representations. Several talks were given related to the topic of network
events and traffic anomalies. Different groups were working at problems similar to the
ones that were study during the fellowship year. Other groups were interested in the
behavior and anomalies of the volumes of network traffic rather than the individual
packets.

Lastly, the fellow attended the Interface 2003 symposium in Salt Lake City March 2003.
Sponsored by The Interface Foundation of North America, the symposium focused on the
topics of security and infrastructure protection with subtopics “statistical analysis and
probabilistic modeling of Internet traffic” and “statistical issues in computer security.”
Research in detecting denial of service attacks and modeling network traffic were of *
particular interest. The coverage of information at the last conference would have been
extremely beneficial if it had been held at the beginning of the fellowship year, but the
information gained at the conference did provide assurance that the problems that had
been studied are of importance and that others are investigating and still trying to add to
the current state of this research topic.

Conclusion

With respect to the goals of the fellowship, the past fifteen months have been very
productive in terms of new research. The questions that the Fellow investigated are of
importance and do not have simple answers Therefore, further investigations need to be
done to develop reliable and efficient mathematical techniques for network traffic
analysis. Although the fellowship period is over, hopefully there will be time to continue
this research. Nevertheless, the research completed for this project could be considered
as a good first approximation for the solution of the complicated problems of the
network traffic analysis.

Appendix — Computer code

The following is the computer code that was written to assist in the research during this
research project. This compilation of code is given to provide a general idea of how some
of the data was generated and how the algorithms work. Some routines have not been
included.

-Mutuallnfo cpp 0

Computes the mutual mformatxon function and autocorrelanon functlon for a glven data

. Stream at dlfferent time delays. : - .

int main(int argc, char *fazgv) B
{ . R , : '
: int i ; : N -

‘int Variable = 2 ;
int DataSize ;
-int’bytes ~'0, /)
double’ xvalue, yvalue, mlnfo, hinfo, correl ;
double T ; T . '
double TimeStep, OrbitLength ;

glutCzeateW1ndcw("Data nnalyst)
. .
DA = MakeDataAnalet(8, 8); N

SetDataAnalyst(Da, —100, 100, -100, 100):

if(OUTPUT FLAG) ofp = fopen(OutFlleName, "wb")

TimeStep = '100.0/M_PT ; k $
OrbitLength = 200.0 ; ' ‘) 'y T

ety

Orbit = MakeOrbit() ;

for(T=10.2 ; T<2.1; T +=.0.01)

{ . - : !

DataSize = int (OrbitLength.* T);)
MakeOrbitBlock (Orbit, DataSize) ;
SecondBlock (Orbit, Datasize); -

OpenOrbitFile(Orbit, UrbitFileName) ; T
HeadOrbitFile (Orbit) ; . o A
getFirstBlock(Orbit) ; . -

SaveBlock (Orbit); getNextBlock(Orbit);

bytes .= 2*Orbit->NoBytes ;
while(. 'AtEOF(Orbit) && (bytes < TotalDataP01nta 1)
{

bytes += Orbit->NoBytes ;

for(i = 0 ; i < Orbit->NoBytes ; i++)}

{ .
xvalue = OrbitData2(Orbit, i, Variable);
. . yvalue = OrbitData(Orbit, i, Variable);
\ ‘ DAStoreData(DA, xvalue, yvalue);

) Sy .
. saveBlock (Orbit) ; 'getNextBlock(Orbit);

} :
- getFirstBlock(Orbit) ;)
» for(i = 0 ; i < Orbit->NoBytes ; i++)

e .._..‘,._.. R . . S i s e+ e e e - e et e e e ot a- "
xvalue = OrbitData2(Orbit, i, Variable);
yvalue = OrbitData(Orbit, i, Variable);
DAStoreData(DA, xvalue, yvalue);
Sy ‘ \

, CloseOrbitFile(Orbit) ;

DANormalize(DA) ;)

printf("DataPts: %d BadPts: %d \n", bytes, DA->BadData) ;
minfo = MutMatrix() ;)

correl = AutoCorrel() :

if(OUTPUT_FLAG)

fprintf(ofp, "sd\tslg\tslg\ti¥lg\n", DatasSize, T, minfo, correl)}

i

}

double
{

}

DestroyBlocks(Orbit);
DAEraseData(DA); bytes = 0 ;

} L :
DestroyOrbit(Orbit);
if (- OUTPUT_FLAG) fclose(ofp) ; . _ “

return(l) ;

AutoCorrel()

double minfo ;

mat = (WVmatrix *) malloc(sizeof (WVmatrix));

mat->size = wvVaNewIndexVector (2, DA->height, DA->width);
mat->bufSize = wvVaNewIndexVector (2, DA->height, DA->width);
mat->buf = DA->Bins ; ’

. mat->ownBuf == (wvBool) 0 ;

minfo = AutoC(mat) ;
free(mat) ;
return(minfo) ;

AutoC(WVmatrix *mat) A . : %

int i, j, height, . width ;) ‘ ‘
double log2 ;

double value = 0.0 ;)

double IJvalue, IIvalue, Ivalue ;

double cellvalue ;

logz =,log(2) ; :

height = wvIndexVectorSub(wvMatrixSize(mat),
width = wvIndexVectorSub(wvMatrixSize(mat),
. \\

.
’

o) ;

1)

Ivalue = 0.0 ;

IIvalue = 0.0 ;

Igvalue = 0.0 ;

for(i = 0 ; i < height; i++) -
for(j = 0 ; j < width ; j++) .
{ -

cellvalue = mat->buf(i*width+j] ;

Ivalue += i*cellvalue ; . .

IIvalue += ji*i*cellvalue ;

IJvalue += ji*j*cellvalue ;

}

value = (IJvalue - Ivalue*Ivalue):/ (IIvalue - Ivalue*Ivalue)

return(value) ;

e

double MutMatrix()

{

double minfo ;

}

double
{

mat->size = wvVaNewIndexVector (2, DA->height, DA->width):
mat->bufSize = vaaNewIndexVector(Z, DA—>helght, DA->width);
mat->buf . = DA->Bins ;
mat->ownBuf = (wvBool) 0 ;

., minfo = MutdalInfo{ mat } :

free(mat) ;
return(minfo) ;

)

MutualInfo(WVmatrix *mat)

int i, j, height, width ;
double log2 ;
double value = 0.0 ;

)

’

‘double Pvalue, PXValue, PYvalue ; ‘ '
_double cellvalue P '
log2 = log(2) ;

height = vandexVeqtorSub(wvMatrixSize (mat Yo 0) 2

width = wvIndexVectorSub(wvMatrixSize(mat), 1 yoi “

'Pvalue = 0.0 ; .
for(i=0; i< hexght*w1dth ; i+t) C,
cellvalue = mat >bufl[i] ; N
o if(cellvalue > 0.0) Pvalue += cellvalue*log(cellvalue)/log2,
) . i
“
PXValue - 0 0 ,,‘
for(i = 0 ; i < height ; i++)
{
value = 0.0 ;
for(j =0, 3 < width ; j++)
SPRRY
cellvalue = mat- >buf[1*w1dth+j] :
value = cellvalue ;
S if(.value > 0.0) PXvalue += value*log(value)/log2 ;
). ’ N ' . ' .
AT . % %

_ PYvalue = 0.0 ; C)
for(j = 0'; j < width ; j++) i
{ . " '
" . .value = 0.0 :
Sfor(i =90 ; i < height-; i++),
{ s ') . .
. cellvalue = mat->buf[i*width+j] ;
' valué += cellvalue ; .
} !) o o
: if(value > 0.0) PYvalue += value*log(value)/log2 :
R - \ ‘ ’
) _ oo
value = Pvalile - PXvalue - PYvalue H
return(value) ; . - E
} .) . . -

double H_function(WVmatrix *mat)
int i, height, width ;
i . double log2 ;

double value = 0.0 ;
double Pvalue ;

double cellvalue ;

log2 = log(2) ;
height = wvIndexVectorSub(wvMatrixSize(mat)
width = ‘wvIndexVectorSub(wvMatrixSize(mat)

“.Pvalug =.0.0 i '
for(1= 0 i i < helght*width 7 15%) e e
{

ce&lvalue = mat->buf(i) ;
1£(cellvalue > 0.0) Pvalue += cellvalue*log(cellvalue)/log2;
}

value = - Pvalue ;
return{ value) ;

DataAnalyst.cpp

These routines handle the data type DataAnalyst. The DataAnalyst is 'essentially atwo
dimension grid that records the number of observations that are seen jn a data set. When
normalxzed the DataAnalyst grid becomes a probablhty density function.

typedef struct _DA
[. :
double *Bins ;
int height, width ;
double dx, dy ;
double x0, x1, y0, yl : : . o
int BadData ;)
} DataAnalyst ; -

DataAnalyst *MakeDataAnalyst(int width, int height)
(g

A

int i ; . .
. DataAnalyst *ptr ;
-ptr = (DataAnalyst *) malloc(sizeof(DataAnalyst)): - s
. _ptr-)Bins = (double *) malloc(width*helqht*31zeof(double)),
for(i = 0 ; i < width*height ; i++) ptr->B1ns[i] = 0.0 ; - .
ptr->width ’v' = width ; ' ')
ptr->height = height ; ' : '

ptr->BadData = 0 ; - !
o return{ptr) ';
}
void SetDataAnalyst(DataAnalyst *ptr, int x0, int x1, int y0, int yl)

{ .
ptr->x0 = x0 ;

~ ptr->x1 = x1 ;

‘ ptr->y0 = y0 ;

ptr->yl = yl H
ptr->dx = 1.0*(x1- x0)/ptr—>width ;

ptr->dy = 1.0*(yl-y0)/ptr->height ;

} o

void DAStoreData(DataAnalyst *ptr, double x, double y)
{ . . o
int i, 3 i

i = {(int) flcor(.(x - ptr=>x0) /ptr->dx f;
j = (int) floor((y - ptr->y0)/ptr->dy):

if((1 <0) I (i > ptr->width-1) || (3 <0) [1 (J > ptr->height-1))
. ptr->BadData++ ;

~ else . ' o
" ptr->Bins[i*pty->width+j] += 1;

) .

void DANormalize{ DataAnalyst *ptr)

{ .
int i ; ¢
double L1 = 0.0 P

for{ i = 0 ; i < ptr->width*ptr->height ; i++) L1 += ptr->Bins(i] ;
for(i = 0 ; i < ptr->width*ptr->height ; i++) ptr->Bins[i] /= L1 ;

Picard.cpp

This program sets up a Picard iteration problem using a symbolic langﬁage. The user
must supply the SetGlobals, SetValues, SetVars, and SetExpression routines.

{

Picard 'VM_eﬂVIOd User Defined Routines

int main(int argc, char ‘*étgv)

FILE *outf ; l .
int t ; !

int level ;

Globalvariables globals H

SetGlobals (eglobalsy ; , R
Setvalues() ; . \ r..

- Setvars() ;

SetExpression() i

'if((outf = fopen(globals.OutputFile;, "wb")) == NULL)

{ . T
' prlntf("%rror opening: %s\n", globals OutputFile)i
return(0) *

3}

erteNoSteps(outf, globals.TimeSteps, globals. tlmestep)
for(t =0 ; t < qldbals TimeSteps ;. t++)
{)
) . Setvars() ;)
for(level = 0 ; level < globals Levels ; level++)
- . i t
o //printf("Tlme&Level\t%d\t%d\nf, t, level);
EvalExpStep() :
IntPolyStep() H
! CopyPolyStep():
)
EvalvValues (globals.timestep) ;'
if((t & 4) == 0) WritePosition(outf) ;'

w-...‘g:

' if((e 8 100) == 0) prlntf("TimeStep = %d {done) \n", t),,)

) B 1
fclose(outf) H

return(l) ; -

void: SetGlobals(GlobalVar;ables *globals)

{

}

{
}

. globals->Levels = 3 ;

void SetExpression{)

globals~>TimeSteps = 10000 H ’ -
globals->timestep = 0.05 ;

~

strcpy(globals->OutputFile, "c:\\jlane\\Images\\picard.txt")

" Example() ;

void Setvalues()

{

}

values (0] =.10 ;
values{l) = 5 ;.
values{2) = 40 ;

void Example()

{

PushPoly (. &A[0], &VI1]))
PushPoly(&A(0]), &V[2]) ; /
PushOperand{(&A[{0), 'M') ; .

° pushPoly{ &A[l]l, &V{0]) ;

PushPoly(&A[l], &V{2]) ;

}

PushOperand(

&A1), 'M') ;

PﬁshPoly(&A{2}, &V(O])
PushPoly(&A(2), &V[1}) ;

PushOperand (

void Cylinder()

{

)

PushPoly(
PushScalar (
PushOperand (

PushPoly (

PushPoly{
PushPoly(
PushOperand (
PushScalar{
PushOperand (

void Cylinder2()

{

}

;o

PushPoly(°
PushScalar (
PushOperand (

PushPoly(

PushPoly(
PushPoly{
PushOperand (
PushPoly(
PushScalar(
PushOperand (
PushOperand (

void Rossler()

{

double a, b,

“&A{0],

&A(2), 'M') ;

&A[0],
-1).;
&A[0), **');

&V{1] ')

&A1), &V([0])

&A(2]),
&A (2],
&A[2), 'M')
&A[2), -4) :
&A[2), '*');

&V|[0]

&A[0}],
&A{0}, -1)
&A[0}, '*');

&A[1l), &VI[0]

&A[2]), &VI[O]

&A[2), &V[1]
&A[2], 'M'):

&A[2), &V[2]}
&A[2), -1) ;
&A[2), '*'):
CA[2]), 'A');

)

&V([1])

.
l

.
7

.
4

i

&Vl)

}

PushOperand (

void Setvars()

{

-

&A[2], '+):

a=10;

b=27;

c =4 ;

PushPoly(&A[0]}, &V[1]) ;
PushPoly (&A[0], &Vi2]) ;
‘PushOpérand(&A[0], 'A’') ;
PushScalar(. &A[0), -1) :
PushOperand(&A[0), '*');
PushPoly (§A[1]), &V[1]) ;
PushScalar{ @ATIT, a 77
PushOperand(&A{l], '*');
PushPoly(&A[1), &V[O0])
PushOperand(&A(1], 'A');
PushPoly (&A[2), &V{O0]) :
PushScalar(¢&A[2], -c) :
PushOperand(&A[2], '+');
PushPoly(&A[2]), &V(2])
PushOperand{ &A(2]), 'M');
PushScalar(&Af2), b);

~vbid.EvalExpStep(5

int'i ; .
-for{(i =0 ; i < NumberEgs ;
- for(i = 0:; i < NumberEqgs ;
}) :
'

{ .
int i.; : _

for{ i = 0; i < NumberEgs ;
) ' l

void IntPolyStep()
{ o R
int i 7 . . !
for(i = 0 ; i < NumberEgs ;
)]) L)

void CopyPolyStep()
(o 2 .
int i ;o " ,

for(i = 0°; i < NumberEgs ;
} .

" void EvalValues{double timestep)

o

int i ;

for(i = 0 ; i < NumberEgs ;
} . L

void WritePosition(FILE *f)
(_

i++
i++

i++

i++

i++

i++

)
)

FreePoly(&V{i]); .
MakePoly (&V{i}, values([i]);

EvalExpresS(&A[i))
+ .
IhiPolyk §A[i].P, values{i]);

CopyPoly(&V{i], &A[i].P);

4
. v o .
values[i] =YEvalPoly(&V{i], timestLp)

; At
fwrite(values, sizeof (double), Numberhqs, £): 8

}

"

void WriteNoSteps(FILE *f, int N, double dt)

{ i :
fwrite(&N, sizeof(int},

1

’

£

fwrite(&dt, sizeof(double), 1, £);

Picar-d Method Sy_js'tem Routines

void IntPoly(Polynomial *P, double initValue)

{
i int i ;

double *newC ;
P~>degree++ ;

newC = (double *) mallocf sizeof (double) * (P->degree+l))
for(i =0 i < P->degree ; i++)

A
}

‘.newC{i] = p->C[i] / (P->degree - i) ;

free{ P->C) ;
P->C = newC ;
} .

{
int 4 ; |
if(P->C != NULL)
{
free(P->C) ;
s P->C = NULL ;
)
P->degree = Q->degree ;
if(P->degree != -1)
{ .

"newClP->degree] = initvalue 7

w

void CopyPoly{ Polynomial *P, Polynomial *Q)

P->C = (double *) -malloc(51zeof(double)*(P—>degree+1))i
for(i =0 ; i < P->degree+l i i++)
P->C(i]) = Q~>C{i] 7

}

double EvalPoly(Polynomial *P, double t)
{
int i ;
double value ;
value = 0 ;
for{ i = 0 ; i < P->degree+l ; i++)
{ - ' ' .
‘value *= t ;-
value += P->C{i] ;
}
return(value);
}

void FreePoly(Polynomial *P)
{

) if(P->C != NULL) free(P=->C) -
--P=>C = NULL ; 7
P->degree = -1 ;

} : .

void InitPoly(Polynomial *P)
['

_ P->degree = -1 ;
) .
void InitPoinggree(Polynomial *P, int degree)
{) \
int i ;
P->C = (double *) malloc(51zeo£(double)*(deqree+1) Y
P- >degree = degree ;
for(i = 0 ; i < P->degree+l ; i++)} P->C{i] = 0 ;
} .

void MakePoly{ Polynomial *P, double coeff)
{ . ' o
. 1f (. P->C == NULL)

P->C = (double .*) malloc(sizeof.(double)) ;
P->C[0) = coeff ;
P->degree = 0 ;

free(P->C) ;
P->C .= NULL ;
MakePoly(P, coeff);

R B

void PrintPoly(Polynomial *P) -
{
int i ; '
printf("Degree ‘%d\t", P->degree);
for{(i =0 ;»i < P- >degree+1 ;oit+) prlntf("$lg\t", P->C[i]):
printf("\n");
}

void MultScalar(Polynomial *P, double scalar)
{
‘ int 1 ; . :
for(i = 0 ; i < P->degree+l ; i++) P->C[i] *= scalar ;
) : [

\

\

void AddScalar(Polynomial *P, double scalar)

P->C = NULL ; » , A .

s

{
'}

8

RE

{

}

o ‘ . . o
void AddPoly(Polynomial *P, Polynomial *Q)

P->C[P->degree] +=.scalar ;

int i ;

Polynomial A; B ;
. T

' 1 o]

InitPoly(&A);

InitPoly(&B)7 -

if (. P->degreg > Q->degree)
(. “

CopyPoly(&A, P).
CopyPoly(B, Q) ;

‘CopyPoly(A, Q) 7

CopyPoly(&B, P) ;

for(i = p ; 1 < B.degree+l ; i++)
‘A.C{A.degree-B.degree+i) += B.C[i] ;

CopyPoly(P, &A) ;

FreePoly(Q) / !
FreePoly(&A) ; ! '
FreePoly{ &B) i

-

. void MultPoly(Polynomial *P, Polynomial *Q)

int i, 3 s

‘Polynomial A ;

int degree ;
int newDegree ;

newDegree - P—>degree*o->degree b

-.InltPolyDegree(&R, newDegree);

for(i = 0 ; i < P->degree+l ; i++)8
for(j =0 ; 3 < Q->deg:ee+1 i)
{
) degree = (P->degree-i) + (Q->degree-j)-;
// this index is really just (i+J)

A.C[newDegree-degree} += P->C{i]*Q~>C{j] ;
) _ s :))

CopyPoly(P, &A) ;
FreePoly(Q) ¢
FreePoly(&A)

void PushOperand(Expression *E, char ¢)

{

}

{

/

Token *T ;

T = (Token *) malloc(31zeof(Token))i
T->next = NULL ;

T->type = '0O' ;

T->Poly = NULL ; -

T->scalar = 0 ;

T->operand = ¢ ;

AddToken(E, T);

void PushPoly(Expression *E, Polynomial *P)

Token *T ;

T = (Token *) malloc(51zeof(Token) -):
T->next = NULL ;

T->type = 'P'

~— s

. E

}

T->Poly = P ;

T->scalar = 0 ;

- T->operand = 0 ; . . !
AddTokgP(E, T):

void PushScalar(Expression *E, double scalar)
Token *T ;
T = (Token *) malloc(sizeof(Token));-
T->next = NULL ;
T->type = 'S'
T->Poly = NULL ;
T->scalar = scalar ;-
T->operand = 0 ;
" AddToken(E, T);
}

_ void AddToken(Expression *E, Token *T)

{

Token *S ;

S = E->List ;

if(S == NULL ‘) E->List = T ;

else

{

while(S->next != NULL) - y

{ o) o

§ = S->next ;

} ;
S->next = T ;

}

void EvalExpress(Expression *E)
{ .
‘Token *T ;
//Polynomial P, Q ;
PolyList L ; .
L.next = NULL ;
T = E->List ;
while(T != NULL)
{ .
switch(T->type)
{ .
case '0O' : // operand
switch(T->operand)
{ : .
, case 'A' : // add poly
‘ -PopPolyList (&L, &E->P):
PopPolyList(&L, &E->Q)
AddPoly(&E->P, &E->Q) ;
PushPolyList(&L, &E->P };
break ;
case 'M" :'// mult poly

POPPOIYLIST{ &L, §E->P)7
_PopPolyList(&L, &E->Q);
MultPoly(&E->P, &E~>Q)
~ PushPolyList(&L, &E->P):
break ;
case '+' : // add scalar and poly
PopPolylList(&L, &E->P);
AddScalar(&E->P, E->scalar);
PushPolyList(&L, &E->P);
break ; 2K
case '*' : // mult scalar and poly
PopPolyList(&L, &E->P);
MultScalar(&E->P, E->scalar);
PushPolyList(&L, &E->P);
break ; ' ' ,
default : break ;

9

void PushPolyList(PolyList *L, Polynomial *P)

{

f

{

}

case

.break?:

ls'

'

: // scalar

E->scalar = T->scalar ;
break ;

case 'Pp’

default :

R

'+ //. polynomial

quhPolyList(&L, T->Poly);
break-;

'

bréak }

|

T = T->next ;

_PopPolyList(&L,

"&E->P)

PolyList *newItem'fl
newItem = (PolyList *) malloc(sizeof(PolyList))i
InitPoly(&newlitem->P);
1E(L->next == NULL)

{

newltem->next = NULL ; '
CopyPoly (&newItem->P, P) ;
L->next = newItem ;

. newItem->next = L->next ;
CopyPSly (énewItem->P, P)
L->next = newltem ;

i

PolylList *ptr ;
. ptr = L->next";

FreePoly(P)

if(L->next

{

~

void PopPolyList{ PolyList *L, Polynomial *P)

{= NULL) -

CopyPoly(P, &L->next->P);
L->next = L->next->next ;
FreePoly(&ptr->P);

free(ptr):;-

void PrintExpress(Expression *E)
(. .

TTTTGKER TR

. T = E->List ;’ .
~while(T != NULL)

{

switch(T->type)

{
case

case

case

0!

printf{ "Operand:\tic\n",

: // operand

break ;

lsl

:. // scalar

T->operand):

printf (- "Scalar: \t%lq\n", T->scalar);
break ;

lPl

: // polynomial

fwrite(&N, sizeof(int), 1, £);
fwrite(&dt, sizeof(double), 1, £);
} :

void StepPicard(simulator *S)
{ . ,
// reguliar simple step through
double dx, dy, dz, dt, dt2, dt3 ;
double x, y, z :)

double a, b, ¢ ;

X = S§=>R[0]} ;

y = S->R{1] ;

2 = S->R([2] ;
a = S->a ;

b = S->b ;

e =

S->c 1 | 7 L,
dt = s->dt ; ' o
dt2 = dt*dt/2 ;

dt3 = dt*dt*dt/3.0 ;

dx = -(z+4y)*dt - (x + a*y + b + z*(x-¢))*dt2 ;
. dy = (x + a*y)*dt + (-z -y + a*x + a*a*y)*dt2 ;

dz = (b + z*(x = c))*dt +i((x-c)*(btz*(X-C)) =~ z*(z+y))*dt2 - (b + z*(x-
C)) ¥ (2+y)*dt3 ; '
: §->R[0]) += dx ; ' N .
S->R[1] += dy ; }
§->R[2] += dz ; ' .

b h|

void StepForward(simulator *S)
(- -

: // regylar simple step through

double dx, dy, dz, dt ; ‘
double x, y, z ;
x = S~->R[0]
y = S->R[1] ;
z = S->R[2) ;
dt = S->dt ;

dx = -(z+y)*dt ;
dy = (x + S->a*y)*dt ;
dz = (S->b + 2*(x - S->c))*dt ;
S$->R[0) += dx ;
S->R(1}] += dy ;
S->R[2] += dz ;
) .

void setPosition(double *r, double x, double y, double z)
{ .

r[0] = x ; r(l] =y i r{2]) =z ;

} .

' Rossler.cpp :

ot e et ;,v',i,! | P A I A e R C o, P 1
PrintPoly(T->Poly);

break ';
default : bfeak H

T = T->next.; ‘ N

This routme generates the Rossler attractor using a Picard method. It is not using the
symbollc language code. Notice the complicated routine to approxxmate the next data

point.
v01d SetSim(s;mulator *S')
{ .) v
§->a = 0.15 ;
$->b = 0.20 ; . . . R
§->¢c = 10.0';/ .) S .)
§->dt = M_PI / 100.0 ; v 1 & o
. 8->Init = 1000 ; ‘ , :] o }
‘S=>T = 33000 ’;
setP031F10n(s->r, 1b.0, 0.0, 0.0) ; ‘ ‘ . '
) . 1
o - . : .
. void main(int argc, char **argv) '
{ : : . : ') '
int n, 'N ; " o : ‘
simulator- S1 ; ' . .
FILE *outf ; » : - ‘ S
" outf = fopen(Outfile, "wb" Y 2
if(outf == NULL) printf("Error openlng file._%s\n", Outfile) :
"Setslm(&51),
“for(n =0 ; n < Sl.Init ; n++)
{. : . A
» StepPicard(&sl);
}
N = int (S1.1/51.dt) ;
WriteNoSteps(outf, N-Sl.Init, Sl.dt);.
for{-n = Sl.Init ; n < N ; n++) _
oA : _ ‘ .
StepPicagrd(&S1);
WritePosition(outf, &51);
//PrintPosition(stdout, &S1);
})) .

n _,._,,..fc,lose.(.out.f.,u“r.,..‘..,... as e : [S— e waa - po—— s 4t Auasin s s A b 4 4 daas e e 4 rale e ﬁ e
L : : o
void PrintPosition(FILE *f, simulator *S) . ' o v .
{ - ,

fprintf(£, "%10.3Lg\t§10.31g\t%10.3lg\n", S->R{0}, S->R{1l), S->R(2])):

)‘ . 7y
void WritePosition(FILE *f, simulator *S) i
(:

fwrite(&(S->R), sizeof(double), 3, £); ' . } ;
) ’ ' ’

void WriteNoSteps(FILE *f, int N, double dt)) ' - .
voic R C

